Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers

1. Christensen, N. I. Shear wave velocities in metamorphic rocks at pressures to 10 kilobars. J. Geophys. Res. Solid Earth 71, 3549–3556 (1966). Article  Google Scholar  2. Crampin, S. Evaluation of anisotropy by shear-wave splitting. Geophysics 50, 142–152 (1985). ADS  Article  Google Scholar  3. Savage, M. K. Seismic anisotropy and […]

  • 1.

    Christensen, N. I. Shear wave velocities in metamorphic rocks at pressures to 10 kilobars. J. Geophys. Res. Solid Earth 71, 3549–3556 (1966).

    Article 

    Google Scholar
     

  • 2.

    Crampin, S. Evaluation of anisotropy by shear-wave splitting. Geophysics 50, 142–152 (1985).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Savage, M. K. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev. Geophysics 37, 65–106 (1999).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Audoine, E., Savage, M. K. & Gledhill, K. Seismic anisotropy from local earthquakes in the transition region from a subduction to a strike-slip plate boundary, New Zealand. J. Geophys. Res. Solid Earth 105, 8013–8033 (2000).

    Article 

    Google Scholar
     

  • 5.

    Currie, C. A., Cassidy, J. F. & Hyndman, R. D. A regional study of shear wave splitting above the Cascadia Subduction Zone: margin-parallel crustal stress. Geophys. Res. Lett. 28, 659–662 (2001).

  • 6.

    Balfour, N. J., Cassidy, J. F. & Dosso, S. E. Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia. Geophys. J. Int 188, 165–176 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Collings, R. et al. Seismic anisotropy in the Sumatra subduction zone. J. Geophys. Res. Solid Earth 118, 5372–5390 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Reiss, M. C., Rümpker, G. & Wölbern, I. Large-scale trench-normal mantle flow beneath central South America. Earth Planet. Sci. Lett. 482, 115–125 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Faccenda, M., Burlini, L., Gerya, T. V. & Mainprice, D. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Russo, R. M. & Silver, P. G. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263, 1105–1111 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Ishise, M. & Oda, H. Three-dimensional structure of P-wave anisotropy beneath the Tohoku district, northeast Japan. J. Geophys. Res. Solid Earth 110, B07304 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Wölbern, I., Löbl, U. & Rümpker, G. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes. Earth Planet. Sci. Lett. 392, 230–238 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 13.

    Fry, B., Deschamps, F., Kissling, E., Stehly, L. & Giardini, D. Layered azimuthal anisotropy of Rayleigh wave phase velocities in the European Alpine lithosphere inferred from ambient noise. Earth Planet. Sci. Lett. 297, 95–102 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Kneller, E. A., van Keken, P. E., Karato, S.-I. & Park, J. B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models. Earth Planet. Sci. Lett. 237, 781–797 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Huang, Z., Zhao, D. & Wang, L. Shear wave anisotropy in the crust, mantle wedge, and subducting Pacific slab under northeast Japan. Geochem. Geophys. Geosyst. 12, Q01002 (2011).

    ADS 

    Google Scholar
     

  • 16.

    Nakajima, J. & Hasegawa, A. Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth Planet. Sci. Lett. 225, 365–377 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Nakajima, J., Shimizu, J., Hori, S. & Hasegawa, A. Shear-wave splitting beneath the southwestern Kurile arc and northeastern Japan arc: a new insight into mantle return flow. Geophys. Res. Lett. 33, L05305 (2006).

    ADS 

    Google Scholar
     

  • 18.

    Okada, T., Matsuzawa, T. & Hsegawa, A. Shear wave polarization anisotropy beneath the northeastern part of Honshu, Japan. Geophys. J. Int. 123, 781–797 (1995).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    National Research Institute for Earth Science and Disaster Resilience, NIED S-net, National Research Institute for Earth Science and Disaster Resilience, https://doi.org/10.17598/NIED.10007 (2019).

  • 20.

    Kanazawa, T. et al. S-Net Project, Cable Observation Network for Earthquakes and Tsunamis, SubOptic 2016, Dubai, 18–21 April, Proceedings WE2B, https://suboptic.org/suboptic-2016/ (2016).

  • 21.

    Mochizuki, M. et al. S-net project: Construction of large-scale seafloor observatory network for tsunamis and earthquakes in Japan, 2016 AGU Fall Meeting, Abstract NH43B-1840 (2016).

  • 22.

    Uehira, K., et al. Outline of Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net), European Geosciences Union General Assembly 2016, Abstract EGU2016-13832 (2016).

  • 23.

    Nishikawa, T. et al. The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science 365, 808–813 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Takagi, R. et al. Estimation of the Orientations of the S‐net Cabled Ocean‐Bottom Sensors. Seismol. Res. Lett., https://doi.org/10.1785/0220190093 (2019).

  • 25.

    Tanaka, S., Matsuzawa, T. & Asano, Y. Shallow low-frequency tremor in the Northern Japan trench subduction zone. Geophys. Res. Lett. 46, 5217–5224 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    National Research Institute for Earth Science and Disaster Resilience, NIED F-net, National Research Institute for Earth Science and Disaster Resilience, https://doi.org/10.17598/NIED.10005 (2019).

  • 27.

    Uchida, N. Detection of repeating earthquakes and their application in characterizing slow fault slip. Prog. Earth Planet Sci. 6, 40 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Uchida, N. & Matsuzawa, T. Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture. Earth Planet. Sci. Lett. 374, 81–91 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Iinuma, T. et al. Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. J. Geophys. Res. Solid Earth 117, B07409 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Ando, M., Ishikawa, Y. & Yamazaki, F. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res. Solid Earth 88, 5850–5864 (1983).

    Article 

    Google Scholar
     

  • 31.

    Nuttli, O. The effect of the earth’s surface on the S wave particle motion. Bull. Seismol. Soc. Am. 51, 237–246 (1961).


    Google Scholar
     

  • 32.

    Jung, H. & Karato, S.-i Water-induced fabric transitions in olivine. Science 293, 1460–1463 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Wada, I. & Wang, K. Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem. Geophys. Geosyst. 10, Q10009 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Wada, I., Rychert, C. A. & Wang, K. Sharp thermal transition in the forearc mantle wedge as a consequence of nonlinear mantle wedge flow. Geophys. Res. Lett. 38, L13308 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Int. 183, 73–90 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    van Keken, P. E., Wada, I., Sime, N. & Abers, G. A. Thermal structure of the forearc in subduction zones: a comparison of methodologies. Geochem. Geophys. Geosyst. 20, 3268–3288 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Abers, G. A., van Keken, P. E. & Hacker, B. R. The cold and relatively dry nature of mantle forearcs in subduction zones. Nat. Geosci. 10, 333–337 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Tsuji, Y., Nakajima, J. & Hasegawa, A. Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: implications for water transportation in subduction zones. Geophys. Res. Lett. 35, L14308 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Kawakatsu, H. & Watada, S. Seismic evidence for deep-water transportation in the mantle. Science 316, 1468–1471 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Currie, C. A., Cassidy, J. F., Hyndman, R. D. & Bostock, M. G. Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. 157, 341-353, (2004).

  • 41.

    Iidaka, T., Muto, J., Obara, K., Igarashi, T. & Shibazaki, B. Trench-parallel crustal anisotropy along the trench in the fore-arc region of Japan. Geophys. Res. Lett. 41, 1957–1963 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Okada, T. et al. Shear wave splitting observed in the southwestern part of Fukushima Prefecture, northeastern Japan. J. Phys. Earth. 42, 303–319 (1994).

    Article 

    Google Scholar
     

  • 43.

    Liu, X. & Zhao, D. Depth-varying azimuthal anisotropy in the Tohoku subduction channel. Earth Planet. Sci. Lett. 473, 33–43 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    Kaneshima, S. Origin of crustal anisotropy: shear wave splitting studies in Japan. J. Geophys. Res. Solid Earth 95, 11121–11133 (1990).

    Article 

    Google Scholar
     

  • 45.

    The Research Group for Active Fault in Japan. Active faults in Japan (2nd edition), (Univ. Tokyo Press., Tokyo, 1991).

  • 46.

    Kita, S. et al. High-resolution seismic velocity structure beneath the Hokkaido corner, northern Japan: Arc-arc collision and origins of the 1970 M 6.7 Hidaka and 1982 M 7.1 Urakawa-oki earthquakes. J. Geophys. Res. Solid Earth 117, https://doi.org/10.1029/2012jb009356 (2012).

  • 47.

    Asano, Y. et al. S. Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63, 669–673 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 48.

    Hasegawa, A. et al. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 355–356, 231–243 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 49.

    Kagan, Y. Y. 3-D rotation of double-couple earthquake sources. Geophys. J. Int. 106, 709–716 (1991).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Uchida, N., Kirby, S. H., Okada, T., Hino, R. & Hasegawa, A. Supraslab earthquake clusters above the subduction plate boundary offshore Sanriku, NE Japan: Seismogenesis in a graveyard of detached seamounts? J. Geophys. Res. Solid Earth 115, B09308 (2010).

    ADS 

    Google Scholar
     

  • 51.

    Kita, S., Okada, T., Hasegawa, A., Nakajima, J. & Matsuzawa, T. Anomalous deepening of a seismic belt in the upper-plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: possible evidence for thermal shielding caused by subducted forearc crust materials. Earth Planet. Sci. Lett. 290, 415–426 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 52.

    Nakajima, J. & Hasegawa, A. Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan: Reactivation of subducted fracture zone? Geophys. Res. Lett. 33, L16309 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Mardia, K. V. & Jupp, P. E. Directional statistics Vol. 494 (John Wiley & Sons., 2009).

  • Source Article

    Next Post

    A compact smartphone best as a secondary device

    © India Today Group Google Pixel 4a review: A compact smartphone best as a secondary device The value-for-money options of the flagship smartphones seem to be the new strategy leading smartphones brands have been adopting of late. The iPhone SE 2020 has been doing well. So is the Samsung S20 […]

    Subscribe US Now