Chaotic early solar system collisions resembled ‘Asteroids’ arcade game — ScienceDaily

One Friday evening in 1992, a meteorite ended a more than 150 million-mile journey by smashing into the trunk of a red Chevrolet Malibu in Peekskill, New York. The car’s owner reported that the 30-pound remnant of the earliest days of our solar system was still warm and smelled of sulfur.

Nearly 30 years later, a new analysis of that same Peekskill meteorite and 17 others by researchers at The University of Texas at Austin and the University of Tennessee, Knoxville, has led to a new hypothesis about how asteroids formed during the early years of the solar system.

The meteorites studied in the research originated from asteroids and serve as natural samples of the space rocks. They indicate that the asteroids formed though violent bombardment and subsequent reassembly, a finding that runs counter to the prevailing idea that the young solar system was a peaceful place.

The study was

Read More

Chaotic early solar system collisions resembled ‘asteroids’ arcade game

Chaotic early solar system collisions resembled 'asteroids' arcade game
A cross-polarized image of the Artracoona meteorite under 50 times magnification. Credit: Michael Lucas.

One Friday evening in 1992, a meteorite ended a more than 150 million-mile journey by smashing into the trunk of a red Chevrolet Malibu in Peekskill, New York. The car’s owner reported that the 30-pound remnant of the earliest days of our solar system was still warm and smelled of sulfur.


Nearly 30 years later, a new analysis of that same Peekskill meteorite and 17 others by researchers at The University of Texas at Austin and the University of Tennessee, Knoxville, has led to a new hypothesis about how asteroids formed during the early years of the solar system.

The meteorites studied in the research originated from asteroids and serve as natural samples of the space rocks. They indicate that the asteroids formed though violent bombardment and subsequent reassembly, a finding that runs counter to the

Read More

‘Like Froth on a Cappuccino’: Spacecraft’s Chaotic Landing Reveals Comet’s Softness

The chaotic crash-landing of a robotic spacecraft called Philae has yielded serendipitous insights into the softness of comets.

In 2014, the pioneering European Space Agency (ESA) lander touched down on comet 67P/Churyumov–Gerasimenko, after a ten-year journey aboard its mothership, Rosetta. But rather than fix itself to the surface, Philae bounced twice and ended up on its side under a shady overhang, cutting its mission short.

After a meticulous search, an ESA team has now discovered the previously unknown site of Philae’s second touchdown—and with it an imprint that the craft left in comet ice that is billions of years old.

The imprint has allowed the researchers to measure the strength of ice beneath the comet’s surface—and they discovered that it is exceptionally soft. “It’s softer than the lightest snow, the froth on your cappuccino or even the bubbles in your bubble bath,” says Laurence O’Rourke, an ESA scientist at the

Read More