What makes certain groups more vulnerable to COVID-19? Researchers look to animals to find clues in proteins involved in infection — ScienceDaily

What makes the elderly and people with underlying conditions more vulnerable to COVID-19? According to a new study led by McGill University researchers, clues can be found in the proteins involved in initiating infection, as the virus binds to host cells of different animals. Greater cellular oxidation with aging and sickness may explain why seniors and people with chronic illness get infected more often and more severely.

Over 60 million people have been infected and around 1.5 million have died from COVID-19. The virus is disrupting economies and food supply chains all over the world. Understanding why some animals get infected and others do not could be the key to unlocking new treatments and therapies. In a study published in Computational and Structural Biotechnology Journal, researchers analyzed available protein sequences of the virus and host cell receptors across different spices to find out why.

“We know that the virus can

Read More

Seemingly Ordinary Fossils May Be Hiding Some Major Clues to the Past

Detail of a partially decalcified Allosaurus bone fossil at Yale Peabody Museum.

Detail of a partially decalcified Allosaurus bone fossil at Yale Peabody Museum.
Photo: Jasmina Wiemann

Paleontologists are lucky to find complete sets of fossilized bones. Sometimes, they get even luckier, finding preserved impressions of delicate features like feathers. Beyond those clues, though, most of the biology of extinct species—their DNA, internal organs, and unique chemistry—has been totally destroyed by the many millions of years that separate us. Except, what if it hasn’t? Some scientists now claim they can tease much more complex biological information out of apparently mundane fossils, including things that most paleontologists don’t expect to survive over millions of years, such as skin and eggshell.

Molecular paleobiologist Jasmina Wiemann has been on the forefront of this exciting research since 2018, co-authoring papers that reveal elements of fossils that cannot be immediately seen with our eyes but can be detected through a series of complex chemical and statistical

Read More

Cascading events led to 2018 Ki?lauea volcanic eruption, providing clues for forecasting — ScienceDaily

The 2018 eruption of Kīlauea Volcano was one of the largest volcanic events in Hawai’i in 200 years. This eruption was triggered by a relatively small and rapid change at the volcano after a decade-long build-up of pressure in the upper parts of the volcano, according to a recent study published in Nature Communications by earth scientists from the University of Hawai’i (UH) at Manoa and U.S. Geological Survey (USGS).

Using USGS Hawaiian Volcanoes Observatory (HVO) data from before and during the 2018 eruptions at the summit and flank, the research team reconstructed the geologic events.

“The data suggest that a backup in the magma plumbing system at the long-lived Puʻu ʻŌʻō eruption site caused widespread pressurization in the volcano, driving magma into the lower flank,” said Matthew Patrick, research geologist at the USGS HVO and lead author of the study.

The eruption evolved, and its impact expanded, as a

Read More

How chemical clues from prehistoric microbes rewrote the story of one of Earth’s biggest mass extinctions

How chemical clues from prehistoric microbes rewrote the story of one of Earth's biggest mass extinctions
Microbial mats in Shark Bay, Western Australia, similar to those that lived around 200 million years ago. Credit: Yalimay Jimenez Duarte WA-OIGC, Curtin University, Author provided

Chemical clues left behind by humble microbes have rewritten the timeline of one of the biggest mass extinction events in Earth’s history.


The so-called “end-Triassic mass extinction”, thought to have occurred just over 200 million years ago, wiped out swathes of prehistoric creatures both on land and in the oceans. It was prompted by the breakup of the supercontinent Pangea, which triggered massive volcanic activity that flooded the atmosphere with carbon dioxide and acidified the oceans.

But our new research, published in Proceedings of the National Academy of Sciences, suggests these cataclysmic events actually happened later than previously thought.

We made this discovery by examining molecular fossils—trace chemicals derived from microbial “mats” that bathed in prehistoric waters.

A likely story

Traditionally, scientists have

Read More

New potential clues in diagnosing, treating Alzheimer’s — ScienceDaily

A study led by the Cedars-Sinai Department of Neurosurgery has identified certain regions in the retina — the lining found in the back of the eye — that are more affected by Alzheimer’s disease than other areas. The findings may help physicians predict changes in the brain as well as cognitive deterioration, even for patients experiencing the earliest signs of mild impairment.

“These clues can occur very early on in the progression of Alzheimer’s disease — several decades before symptoms appear,” said Maya Koronyo-Hamaoui, PhD, associate professor of Neurosurgery and Biomedical Sciences and co-corresponding author of the study. “Detecting these signs can help diagnose the disease more accurately, allowing for earlier and more effective treatment intervention.”

Alzheimer’s disease is the most common form of dementia, a group of brain disorders characterized by a general loss of mental abilities, including memory, judgment, language and abstract thinking.

The findings of the new

Read More

Tree rings may hold clues to impacts of distant supernovas on Earth — ScienceDaily

Massive explosions of energy happening thousands of light-years from Earth may have left traces in our planet’s biology and geology, according to new research by University of Colorado Boulder geoscientist Robert Brakenridge.

The study, published this month in the International Journal of Astrobiology, probes the impacts of supernovas, some of the most violent events in the known universe. In the span of just a few months, a single one of these eruptions can release as much energy as the sun will during its entire lifetime. They’re also bright — really bright.

“We see supernovas in other galaxies all the time,” said Brakenridge, a senior research associate at the Institute of Arctic and Alpine Research (INSTAAR) at CU Boulder. “Through a telescope, a galaxy is a little misty spot. Then, all of a sudden, a star appears and may be as bright as the rest of the galaxy.”

A very

Read More

Chemical clues in leaves can reveal ash tree resistance to deadly disease — ScienceDaily

Naturally occurring compounds in ash leaves could be linked to susceptibility of individual trees to the fungal disease ash dieback (ADB). But selecting trees with lower levels of these compounds and breeding for resistance could leave the UK ash tree population open to attack from invading insect pests in the future, according to scientists at the University of Warwick.

Secoiridoid glycosides are naturally occurring compounds found in plant leaves. Researchers from Warwick’s School of Life Sciences and Department of Chemistry and the School of Biosciences at the University of Exeter looked at the abundance and diversity of secoiridoid glycosides in the leaves of a panel of ash trees known to be resistant and samples from trees known to be susceptible to ADB from both Denmark and the UK.

Previous research had identified five compounds in the secoiridoid glycoside family that were enriched in susceptible Danish trees, but results published today

Read More

Cephalopod jet propulsion reveals clues about how squids maneuver within turbulent flows. — ScienceDaily

Squids and other cephalopods use a form of jet propulsion that is not well understood, especially when it comes to their hydrodynamics under turbulent flow conditions. Discovering their secrets can help create new designs for bioinspired underwater robots and vehicles that need to operate within this environment.

Researchers in Scotland, the U.S., and China are exploring the fundamental mechanism behind squids’ pulsed-jet propulsion. In Physics of Fluids, from AIP Publishing, the group describes their numerical study of the jet propulsion of cephalopods with turbulent flow considered for the first time. Among their discoveries, they found that thrust production and efficiency are underestimated within laminar, or nonturbulent, flows.

The model for this research is a 2D squidlike swimmer that has a flexible mantle body with a pressure chamber and a nozzle that serves as the inlet and outlet of water. An external force, which mimics the squid muscle’s constriction, is

Read More

Astronomers discover clues that unveil the mystery of fast radio bursts — ScienceDaily

Fast radio bursts, or FRBs — powerful, millisecond-duration radio waves coming from deep space outside the Milky Way Galaxy — have been among the most mysterious astronomical phenomena ever observed. Since FRBs were first discovered in 2007, astronomers from around the world have used radio telescopes to trace the bursts and look for clues on where they come from and how they’re produced.

UNLV astrophysicist Bing Zhang and international collaborators recently observed some of these mysterious sources, which led to a series of breakthrough discoveries reported in the journal Nature that may finally shed light into the physical mechanism of FRBs.

The first paper, for which Zhang is a corresponding author and leading theorist, was published in the Oct. 28 issue of Nature.

“There are two main questions regarding the origin of FRBs,” said Zhang, whose team made the observation using the Five-hundred-meter Aperture Spherical Telescope (FAST) in Guizhou,

Read More

New technology finds long-hidden quakes, and possible clues about how earthquakes evolve — ScienceDaily

Measures of Earth’s vibrations zigged and zagged across Mostafa Mousavi’s screen one morning in Memphis, Tenn. As part of his PhD studies in geophysics, he sat scanning earthquake signals recorded the night before, verifying that decades-old algorithms had detected true earthquakes rather than tremors generated by ordinary things like crashing waves, passing trucks or stomping football fans.

“I did all this tedious work for six months, looking at continuous data,” Mousavi, now a research scientist at Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth), recalled recently. “That was the point I thought, ‘There has to be a much better way to do this stuff.'”

This was in 2013. Handheld smartphones were already loaded with algorithms that could break down speech into sound waves and come up with the most likely words in those patterns. Using artificial intelligence, they could even learn from past recordings to become more accurate

Read More