Patterning method could pave the way for new fiber-based devices, smart textiles — ScienceDaily

Multimaterial fibers that integrate metal, glass and semiconductors could be useful for applications such as biomedicine, smart textiles and robotics. But because the fibers are composed of the same materials along their lengths, it is difficult to position functional elements, such as electrodes or sensors, at specific locations. Now, researchers reporting in ACS Central Science have developed a method to pattern hundreds-of-meters-long multimaterial fibers with embedded functional elements.

Youngbin Lee, Polina Anikeeva and colleagues developed a thiol-epoxy/thiol-ene polymer that could be combined with other materials, heated and drawn from a macroscale model into fibers that were coated with the polymer. When exposed to ultraviolet light, the polymer, which is photosensitive, crosslinked into a network that was insoluble to common solvents, such as acetone. By placing “masks” at specific locations along the fiber in a process known as photolithography, the researchers could protect the underlying areas from UV light. Then, they

Read More