Decoding gigantic insect genome could help tackle devastating locust crises — ScienceDaily

A ‘game changing’ study deciphering the genetic material of the desert locust by researchers at the University of Leicester, could help combat the crop-ravaging behaviour of the notorious insect pest which currently exacerbates a hunger crisis across many developing countries.

It is hoped that the study will provide the basis for developing ‘intelligent pesticides’, that act with surgical precision by tapping into locust-specific signals in the nervous system, to either kill or disable their swarming behaviour, without harming other organisms.

The full set of genetic information for the desert locust could have major international implications for countries such as East Africa, the Arabian Peninsula and South-West Asia, which this year have been suffering the most devastating desert locust crises in decades despite wide-spread control operations that are still ongoing.

According to the Food and Agricultural Organisation (FAO), a swarm of locusts can contain around 40 million insects per square kilometre,

Read More

Folding of SARS-CoV2 genome reveals drug targets — and preparation for ‘SARS-CoV3’ — ScienceDaily

For the first time, an international research alliance has observed the RNA folding structures of the SARS-CoV2 genome with which the virus controls the infection process. Since these structures are very similar among various beta corona viruses, the scientists not only laid the foundation for the targeted development of novel drugs for treating COVID-19, but also for future occurrences of infection with new corona viruses that may develop in the future.

The genetic code of the SARS-CoV2 virus is exactly 29,902 characters long, strung through a long RNA molecule. It contains the information for the production of 27 proteins. This is not much compared to the possible 40,000 kinds of protein that a human cell can produce. Viruses, however, use the metabolic processes of their host cells to multiply. Crucial to this strategy is that viruses can precisely control the synthesis of their own proteins.

SARS-CoV2 uses the spatial folding

Read More

New genome alignment tool empowers large-scale studies of vertebrate evolution — ScienceDaily

Three papers published November 11 in Nature present major advances in understanding the evolution of birds and mammals, made possible by new methods for comparing the genomes of hundreds of species.

Comparative genomics uses genomic data to study the evolutionary relationships among species and to identify DNA sequences with essential functions conserved across many species. This approach requires an alignment of the genome sequences so that corresponding positions in different genomes can be compared, but that becomes increasingly difficult as the number of genomes grows.

Researchers at the UC Santa Cruz Genomics Institute developed a powerful new genome alignment method that has made the new studies possible, including the largest genome alignment ever achieved of more than 600 vertebrate genomes. The results provide a detailed view of how species are related to each other at the genetic level.

“We’re literally lining up the DNA sequences to see the corresponding positions

Read More

Genome resource expands known diversity of bacteria and archaea by 44% — ScienceDaily

Despite advances in sequencing technologies and computational methods in the past decade, researchers have uncovered genomes for just a small fraction of Earth’s microbial diversity. Because most microbes cannot be cultivated under laboratory conditions, their genomes can’t be sequenced using traditional approaches. Identifying and characterizing the planet’s microbial diversity is key to understanding the roles of microorganisms in regulating nutrient cycles, as well as gaining insights into potential applications they may have in a wide range of research fields.

A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available and described November 9, 2020 in Nature Biotechnology. Known as the GEM (Genomes from Earth’s Microbiomes) catalog, this work results from a collaboration involving more than 200 scientists, researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office

Read More

The Genome of Your Pet Fish Is Extremely Weird

Humans have domesticated a large number of animals over their history, some for food, some as companions and protectors. A few species—think animals like rabbits and guinea pigs—have partly shifted between these two categories, currently serving as both food and pets. But one species has left its past as a food source behind entirely. And, in another rarity, it ended up serving not so much as a companion but as a decoration.

ARS TECHNICA

This story originally appeared on Ars Technica, a trusted source for technology news, tech policy analysis, reviews, and more. Ars is owned by WIRED’s parent company, Condé Nast.

We’re talking goldfish here, and we’ve now gotten a look at their genome. And it’s almost as weird as the fish themselves are.

It’s worth stopping for a moment to consider just how weird they are within the realm of domestication. They started out just as slightly colored

Read More

Discovery of shape of the SARS-CoV-2 genome after infection could inform new COVID-19 treatments — ScienceDaily

Scientists at the University of Cambridge, in collaboration with Justus-Liebig University, Germany, have uncovered how the genome of SARS-CoV-2 — the coronavirus that causes COVID-19 — uses genome origami to infect and replicate successfully inside host cells. This could inform the development of effective drugs that target specific parts of the virus genome, in the fight against COVID-19.

SARS-CoV-2 is one of many coronaviruses. All share the characteristic of having the largest single-stranded RNA genome in nature. This genome contains all the genetic code the virus needs to produce proteins, evade the immune system and replicate inside the human body. Much of that information is contained in the 3D structure adopted by this RNA genome when it infects cells.

The researchers say most current work to find drugs and vaccines for COVID-19 is focused on targeting the proteins of the virus. Because the shape of the RNA molecule is critical

Read More

SARS-CoV-2 uses ‘genome origami’ to infect and replicate inside host cells

SARS-CoV-2 , COVID-19 , coronavirus
A colorized scanning electron micrograph of the SARS-CoV-2 virus. Credit: NIAID

Scientists at the University of Cambridge, in collaboration with Justus-Liebig University, Germany, have uncovered how the genome of SARS-CoV-2—the coronavirus that causes COVID-19—uses genome origami to infect and replicate successfully inside host cells. This could inform the development of effective drugs that target specific parts of the virus genome, in the fight against COVID-19.


SARS-CoV-2 is one of many coronaviruses. All share the characteristic of having the largest single-stranded RNA genome in nature. This genome contains all the genetic code the virus needs to produce proteins, evade the immune system and replicate inside the human body. Much of that information is contained in the 3-D structure adopted by this RNA genome when it infects cells.

The researchers say most current work to find drugs and vaccines for COVID-19 is focused on targeting the proteins of the virus. Because the

Read More

Denisovan DNA in the genome of early East Asians

Denisovan DNA in the genome of early East Asians
The skullcap found in the Salkhit Valley in eastern Mongolia belonged to a woman who lived 34,000 years ago. Analyses showed: She had inherited about 25 percent of her DNA from Western Eurasian. Credit: Institute of Archaeology, Mongolian Academy of Sciences

Researchers have analyzed the genome of the oldest human fossil found in Mongolia to date and show that the 34,000-year-old woman inherited around 25 percent of her DNA from western Eurasians, demonstrating that people moved across the Eurasian continent shortly after it had first been settled by the ancestors of present-day populations. This individual and a 40,000-year-old individual from China also carried DNA from Denisovans, an extinct form of hominins that inhabited Asia before modern humans arrived.


In 2006, miners discovered a hominin skullcap with peculiar morphological features in the Salkhit Valley of the Norovlin county in eastern Mongolia. It was initially referred to as Mongolanthropus and thought to

Read More

Academies’ report reviews debate on genome editing for crop improvement

crop
Credit: CC0 Public Domain

Since the ruling of the Court of Justice of the EU of 2018, which placed genome-edited crops under the Genetically Modified Organisms (GMO) legislation, the scientific community has passionately debated the future of these new breeding techniques.


The new ALLEA report “Genome Editing for Crop Improvement” presents the state of the art of scientific evidence in the field and explores paths to harmonize EU legislation with recent scientific developments, while particularly considering relevant ethical and societal considerations.

The report summarizes the discussions between scientific experts, policy-makers and civil-society organizations at a public symposium Genome Editing for Crop Improvement held in Brussels in November 2019, where ALLEA and the Royal Flemish Academy of Belgium for Science and the Arts KVAB invited relevant stakeholders and the interested public to assess and discuss the impact of the ruling on present research and developments in genome editing for plant breeding.

Read More

Genome and satellite technology reveal recovery rates and impacts of climate change on southern right whales

Genome and satellite technology reveal recovery rates and impacts of climate change on southern right whales
Credit: University of Auckland tohorā research team, Department of Conservation permit DJI

After close to a decade of globe-spanning effort, the genome of the southern right whale has been released this week, giving us deeper insights into the histories and recovery of whale populations across the southern hemisphere.


Up to 150,000 southern right whales were killed between 1790 and 1980. This whaling drove the global population from perhaps 100,000 to as few as 500 whales in 1920. A century on, we estimate there are 12,000 southern right whales globally. It’s a remarkable conservation success story, but one facing new challenges.

The genome represents a record of the different impacts a species has faced. With statistical models we can use genomic information to reconstruct historical population trajectories and patterns of how species interacted and diverged.

We can then link that information with historical habitat and climate patterns. This look back into

Read More