Cascading events led to 2018 Ki?lauea volcanic eruption, providing clues for forecasting — ScienceDaily

The 2018 eruption of Kīlauea Volcano was one of the largest volcanic events in Hawai’i in 200 years. This eruption was triggered by a relatively small and rapid change at the volcano after a decade-long build-up of pressure in the upper parts of the volcano, according to a recent study published in Nature Communications by earth scientists from the University of Hawai’i (UH) at Manoa and U.S. Geological Survey (USGS).

Using USGS Hawaiian Volcanoes Observatory (HVO) data from before and during the 2018 eruptions at the summit and flank, the research team reconstructed the geologic events.

“The data suggest that a backup in the magma plumbing system at the long-lived Puʻu ʻŌʻō eruption site caused widespread pressurization in the volcano, driving magma into the lower flank,” said Matthew Patrick, research geologist at the USGS HVO and lead author of the study.

The eruption evolved, and its impact expanded, as a

Read More

Signs of Recent Volcanic Eruption on Mars Hint at Habitats for Life

Mars was once home to seas and oceans, and perhaps even life. But our neighboring world has long since dried up and its atmosphere has been blown away, while most activity beneath its surface has long ceased. It’s a dead planet.

Or is it?

Previous research has hinted at volcanic eruptions on Mars 2.5 million years ago. But a new paper suggests an eruption occurred as recently as 53,000 years ago in a region called Cerberus Fossae, which would be the youngest known volcanic eruption on Mars. That drives home the prospect that beneath its rusty surface pocked with gigantic volcanoes that have gone silent, some volcanism still erupts to the surface at rare intervals.

“If this deposit is of volcanic origin then the Cerberus Fossae region may not be extinct and Mars may still be volcanically active today,” scientists at the University of Arizona and Smithsonian Institution, write in

Read More

Piecing together the Alaska coastline’s fractured volcanic activity

Piecing together the Alaska coastline's fractured volcanic activity
Schematic diagram showing the geometry of a typical subduction zone and the production of arc volcanoes. New research by X. Yang and H. Gao at UMass Amherst reveals new information on Alaska’s arc volcanoes. Credit: Xiaotao Yang

Among seismologists, the geology of Alaska’s earthquake- and volcano-rich coast from the Aleutian Islands to the southeast is fascinating, but not well understood. Now, with more sophisticated tools than before, a University of Massachusetts Amherst team reports unexpected new details about the area’s tectonic plates and their relationships to volcanoes.


Plate tectonics—the constant underground movement of continental and ocean shelves, is often characterized by “subduction zones” where plates clash, one usually sliding under another. Many are prime earthquake- and volcano-prone regions.

Lead author Xiaotao Yang says, “For a long time, the whole central Alaska region was thought to have one simple subduction plate. What we discovered is that there are actually two major

Read More

Large volcanic eruption caused the largest mass extinction — ScienceDaily

Researchers in Japan, the US and China say they have found more concrete evidence of the volcanic cause of the largest mass extinction of life. Their research looked at two discrete eruption events: one that was previously unknown to researchers, and the other that resulted in large swaths of terrestrial and marine life going extinct.

There have been five mass extinctions since the divergent evolution of early animals 450 — 600 million years ago. The third was the largest one and is thought to have been triggered by the eruption of the Siberian Traps — a large region of volcanic rock known as a large igneous province. But the correlation between the eruption and mass extinction has not yet been clarified.

Sedimentary mercury enrichments, proxies for massive volcanic events, have been detected in dozens of sedimentary rocks from the end of the Permian. These rocks have been found deposited inland,

Read More

New drone technology improves ability to forecast volcanic eruptions — ScienceDaily

Specially-adapted drones developed by a UCL-led international team have been gathering data from never-before-explored volcanoes that will enable local communities to better forecast future eruptions.

The cutting-edge research at Manam volcano in Papua New Guinea is improving scientists’ understanding of how volcanoes contribute to the global carbon cycle, key to sustaining life on Earth.

The team’s findings, published in Science Advances, show for the first time how it is possible to combine measurements from the air, earth and space to learn more about the most inaccessible, highly active volcanoes on the planet.

The ABOVE project involved specialists from the UK, USA, Canada, Italy, Sweden, Germany, Costa Rica, New Zealand and Papua New Guinea, spanning volcanology and aerospace engineering.

They co-created solutions to the challenges of measuring gas emissions from active volcanoes, through using modified long-range drones.

By combining in situ aerial measurements with results from satellites and ground-based remote sensors,

Read More

ALMA shows volcanic impact on Io’s atmosphere — ScienceDaily

New radio images from the Atacama Large Millimeter/submillimeter Array (ALMA) show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter’s moon Io.

Io is the most volcanically active moon in our solar system. It hosts more than 400 active volcanoes, spewing out sulfur gases that give Io its yellow-white-orange-red colors when they freeze out on its surface.

Although it is extremely thin — about a billion times thinner than Earth’s atmosphere — Io has an atmosphere that can teach us about Io’s volcanic activity and provide us a window into the exotic moon’s interior and what is happening below its colorful crust.

Previous research has shown that Io’s atmosphere is dominated by sulfur dioxide gas, ultimately sourced from volcanic activity. “However, it is not known which process drives the dynamics in Io’s atmosphere,” said Imke de Pater of the University of California, Berkeley. “Is

Read More

ALMA shows volcanic impact on Io’s atmosphere

ALMA shows volcanic impact on Io's atmosphere
Composite image showing Jupiter’s moon Io in radio (ALMA), and optical light (Voyager 1 and Galileo). The ALMA images of Io show for the first time plumes of sulfur dioxide (in yellow) rise up from its volcanoes. Jupiter is visible in the background (Hubble). Credit: ALMA (ESO/NAOJ/NRAO), I. de Pater et al.; NRAO/AUI NSF, S. Dagnello; NASA/ESA

New radio images from the Atacama Large Millimeter/submillimeter Array (ALMA) show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter’s moon Io.


Io is the most volcanically active moon in our solar system. It hosts more than 400 active volcanoes, spewing out sulfur gases that give Io its yellow-white-orange-red colors when they freeze out on its surface.

Although it is extremely thin—about a billion times thinner than Earth’s atmosphere—Io has an atmosphere that can teach us about Io’s volcanic activity and provide us a window into the

Read More